Volume 5, Issue 1, March 2020, Page: 1-14
Angular Distribution and Polarization of Superradiant Emission from Atomic Ensembles
Verne Louis Jacobs, Center for Computational Materials Science, Code 6390, Materials Science and Technology Division, Naval Research Laboratory, Washington, D. C., U.S.A
Received: Mar. 1, 2020;       Accepted: Mar. 13, 2020;       Published: Apr. 1, 2020
DOI: 10.11648/j.wjap.20200501.11      View  401      Downloads  138
A density-matrix approach is developed to provide a theoretical description of the intensity, angular distribution, and polarization of superradiative emission from an ensemble of many-electron atomic systems. The many-electron atomic systems are described as cooperatively interacting by means of forces that can be long range. Particular emphasis is given to the coherent excitation of the collective atomic-ensemble states, which may be produced by incident laser radiation. The initial excitation and spontaneous emission processes may be described as independent. Both frequency-domain and time-domain formulations of the density-matrix approach are developed. The collective atomic-ensemble states are specified in a detailed hyperfine representation, corresponding to successively coupling the individual hyperfine angular momenta F pertaining to the many-electron atoms. A less detailed fine-structure angular-momentum representation may also be used. In the density-operator approach, account can be taken of the coherent excitation of a particular subspace of the initial atomic-ensemble states. For a comprehensive and unified development of time-domain (equation-of-motion) and frequency-domain (resolvent-operator) formulations, a reduced-density-matrix (quantum-open-systems) approach is introduced. The non-equilibrium atomic-ensemble-state kinetics and the homogeneous spectral-line shapes can thereby be systematically and self-consistently determined. The collective atomic-ensemble states may be obtained using a variety of different methods. These states can be determined using a dressed-state approach, in which the required states are calculated in the presence of an electromagnetic field.
Superradiance, Atomic Ensembles, Density Matrix, Coherence
To cite this article
Verne Louis Jacobs, Angular Distribution and Polarization of Superradiant Emission from Atomic Ensembles, World Journal of Applied Physics. Vol. 5, No. 1, 2020, pp. 1-14. doi: 10.11648/j.wjap.20200501.11
Copyright © 2020 Authors retain the copyright of this article.
This article is an open access article distributed under the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
R. H. Dicke, Phys. Rev. 93, 99 (1954).
W. Guerin, M. O. Araujp, and R. Kaiser, Phys. Rev. Lett. 116, 083601 (2016).
V. L. Jacobs and A. B. Filuk, Phys. Rev. A 60, 1975 (1999).
V. L. Jacobs, Phys. Rev. A 90, 033841 (2014).
J. R. Oppenheimer, Z. Phys. 43, 27 (1927).
I. C. Percival and M. J. Seaton, Phil. Trans. R. Soc. A 251, 113 (1958).
M. K. Inal and J. Dubau, J. Phys. B 20, 4221 (1987).
M. K. Inal and J. Dubau, J. Phys. B 22, 3329 (1989).
A. S. Shlyaptseva, A. M. Urnov, and A. V. Vinogradov, P. N. Lebedev Physical Institute of the U. S. S. R. Academy of Sciences Report No. 194, 1981.
A. V. Vinogradov, A. M. Urnov, and A. S. Shlyaptseva, in Atomic and Ionic Spectra and Elementary Processes in Plasmas, Proceedings of the P. N. Lebedev Physics Institute, Academy of Sciences of Russia, Vol. 912, Edited by I. I. Sobelman (Nova Science Publishers, Commack, New York, 1992), 93.
A. S. Shlyaptseva et al., Phys. Rev. A 57, 888 (1998).
M. F. Gu, D. W. Savin, and P. Beiersddorfer, J. Phys. B 32, 5371 (1999).
V. L. Jacobs, J. Phys. B 5, 2257 (1972).
V. L. Jacobs, J. Phys. B 6, 1461 (1973).
U. Fano, Rev. Mod. Phys. 29, 74 (1957).
K. Blum, Density Matrix Theory and Applications, Second Edition, (Plenum, New York, 1996).
S. A. Kazantsev and J.-C. Hénoux, Polarization Spectroscopy of Ionized Gases, (Kluwer, Dordrecht, 1995).
U. Fano and G. Racah, Irreducible Tensorial Sets, (Academic, New York, 1959).
V. B. Berestetskii, E. M. Lifshitz, and L. P. Pitaevskii, Quantum Electrodynamics, (Pergamon, Oxford, 1982).
W. Happer, Ann. Phys. 48, 579 (1968).
W. Happer, Rev. Mod. Phys. 44, 169 (1972).
A. Omont, Progress in Quantum Electronics 5, 69 (1977).
W. E. Baylis, in Progress in Atomic Spectroscopy, edited by W. Hanle and H. Kleinpoppen (Plenum, New York, 1979).
V. L. Jacobs, P. G. Burke, and R. M. Potvliege, J. Phys. B: At. Mol. Opt. Phys. 47, 025401 (2014).
H. H. Jen, Phys Rev A, 96 023814 (1917).
E. Fick and G. Sauermann, The Quantum Statistics of Dynamic Processes (Springer, Berlin, 1990).
C. Cohen-Tannoudji, J. Dupont-Roc, and G. Grynberg, Atom-Photon Interactions (Wiley-Interscience, New York, 1992).
R. Zwanzig, in Lectures in Theoretical Physics III, edited by W. E. Brittin, D. W. Downs and J. Downs (Interscience, New York, 1961).
R. Zwanzig, J. Chem. Phys. 33, 1338 (1960).
U. Fano, Phys. Rev. 131, 259 (1963).
U. Fano, in Lectures on Many-Body Problems, edited by E. R. Caianiello (Academic Press, New York, 1964).
A. Ben-Reuven, Adv. Chem. Phys. 33, 235 (1975).
S. Mukamel, Phys. Rep. 93, 1 (1982).
V. L. Jacobs, J. Cooper, and S. L. Haan, Phys. Rev. A 50, 3005 (1994).
V. L. Jacobs, Canadian Journal of Physics 89, 533 (2011).
A. Ben-Reuven and Y. Rabin, Phys. Rev. A 19, 2056 (1979).
K. Burnett, J. Cooper, R. J. Ballagh, and E. W. Smith, Phys. Rev. A 22, 2005 (1980).
H. Mori, Prog. Theor. Phys. 33, 423 (1965).
M. Gross and S. Haroche, Physics Reports 93, 5 (1982).
K. D. P. Higgins et al, Nature Communications 5, 4705 (2014).
Xueping Long et al, Phys. Rev, Letters 123, 033603 (2019).
Browse journals by subject