Volume 4, Issue 3, September 2019, Page: 41-45
Field Reconstruction of Holograms for Interactive Free Space True Three Dimensional Display
Guangjun Wang, Bowei Integrated Circuits CO., LTD., Shijiazhuang, P. R. China; College of Physics, Jilin University, Changchun, P. R. China
Received: Jan. 27, 2019;       Accepted: Apr. 2, 2019;       Published: Oct. 21, 2019
DOI: 10.11648/j.wjap.20190403.12      View  627      Downloads  150
Nowadays, the 3D display technology has attracted great academic and industrial attention due to its rapid development and applications in providing more realistic, natural, and extra depth images far superior than the traditional 2D display. But traditional 3D techniques suffer from many drawbacks and hard to meet the requirement of commercialization. In the present study, the field reconstruction method of holograms is proposed for the first time to realize the display of true 3D image in free space which is more practical and better than traditional holographic technique in image quality. An optical switch array (OSA) and a projection lens are used to generate a series of 2D image slice, which can form a virtual 3D object, in free space. Then the light from the virtual object and reference light interference with each other forming an interferometric fringe on the screen and thus the 3D image of the virtual object is reconstructed in free space, timely. Meanwhile, the OSA can work as an image generator and sensor simultaneously which allows user to interact with the reconstructed 3D scenery without extra equipment.
3D Display, Hologram Displaced, Field Reconstruction of Holograms
To cite this article
Guangjun Wang, Field Reconstruction of Holograms for Interactive Free Space True Three Dimensional Display, World Journal of Applied Physics. Vol. 4, No. 3, 2019, pp. 41-45. doi: 10.11648/j.wjap.20190403.12
Copyright © 2019 Authors retain the copyright of this article.
This article is an open access article distributed under the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
I. J. Chen, C.-W. Tarn, Optik - International Journal for Light and Electron Optics, 126 (2015) 4061-4065.
S. Xie, X. Sang, P. Wang, N. Guo, Z. Chen, X. Yu, B. Yan, K. Wang, C. Yu, Opt Commun, (2016).
D. M. Hoffman, A. R. Girshick, K. Akeley, M. S. Banks, Journal of vision, 8 (2008) 33 31-30.
Y. Takaki, Displays, 37 (2015) 19-24.
X. Gao, X. Sang, X. Yu, D. Chen, Z. Chen, W. Zhang, B. Yan, J. Yuan, K. Wang, C. Yu, W. Dou, L. Xiao, Opt Commun, 370 (2016) 68-74.
P. Wang, Q.-H. Wang, Y.-Z. Wang, D.-H. Li, Optik - International Journal for Light and Electron Optics, 126 (2015) 5744-5747.
H. Deng, Q.-H. Wang, Z.-L. Xiong, H.-L. Zhang, Y. Xing, Optik - International Journal for Light and Electron Optics, 127 (2016) 4250-4253.
J. Geng, Displays, 34 (2013) 39-48.
P.-A. Blanche, S. Tay, R. Voorakaranam, P. Saint-Hilaire, C. Christenson, T. Gu, W. Lin, D. Flores, PengWang, M. Yamamoto, J. Thomas, R. A. Norwood, N. Peyghambarian, JOURNAL OF DISPLAY TECHNOLOGY, 4 (2008) 425.
D. Kong, X. Shen, L. Cao, H. Zhang, S. Zong, G. Jin, Opt Commun, 380 (2016) 387-393.
Y. Takaki, N. Okada, Appl Optics, 48 (2009) 3255.
R. Häussler, A. Schwerdtner, N. Leister, Proc. SPIE, 6803 (2008).
H. Kim, J. Kim, J. Kim, B. Lee, S.-D. Lee, Opt Commun, 357 (2015) 52-57.
M. Martinez-Corral, A. Dorado, H. Navarro, G. Saavedra, B. Javidi, Appl Opt, 53 (2014) E19-25.
Z. Chen, X. sang, Q. Lin, J. Li, X. Yu, X. Gao, B. Yan, K. Wang, C. Yu, S. Xie, Opt Commun, 384 (2017) 125-129.
W. Song, Q. Zhu, Y. Liu, Y. Wang, Appl Optics, 54 (2015) 4154.
R. Castañeda, D. Hincapie, J. Garcia-Sucerquia, Optik - International Journal for Light and Electron Optics, 132 (2017) 274-283.
W. Zhao, B. Liu, H. Jiang, J. Song, Y. Pei, Y. Jiang, Opt Lett, 41 (2016) 147-150.
K. Kumagai, S. Hasegawa, Y. Hayasaki, Optica, 4 (2017) 298.
Browse journals by subject