Volume 2, Issue 4, November 2017, Page: 113-118
Theoretical Studies of Positron Annihilation in Aluminum Bismuth Alloy
Noureddine Amrane, Faculty of Science, United Arab Emirates University, Al-Ain, United Arab Emirates
Maamar Benkraouda, Faculty of Science, United Arab Emirates University, Al-Ain, United Arab Emirates
Received: Jul. 30, 2017;       Accepted: Sep. 5, 2017;       Published: Nov. 11, 2017
DOI: 10.11648/j.wjap.20170204.14      View  1198      Downloads  46
Abstract
Electron and positron charge densities are calculated as a function of position in the unit cell for Aluminum Bismuth binary compound. Wave functions are derived from pseudopotential band structure calculations and the independent particle approximation (IPM), respectively, for the electrons and the positrons. It is observed that the positron density is maximum in the open interstices and is excluded not only, from the ion cores but also to a considerable degree from the valence bonds. Electron-positron momentum densities are calculated for (001, 110) planes. The results are used to analyze the positron effects in AlBi.
Keywords
Positron, Band Structure, Charge Density, Momentum Density
To cite this article
Noureddine Amrane, Maamar Benkraouda, Theoretical Studies of Positron Annihilation in Aluminum Bismuth Alloy, World Journal of Applied Physics. Vol. 2, No. 4, 2017, pp. 113-118. doi: 10.11648/j.wjap.20170204.14
Copyright
Copyright © 2017 Authors retain the copyright of this article.
This article is an open access article distributed under the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Reference
[1]
Ph. Ebert, Surf. Sci. Rep. 33, 121 (1999).
[2]
%B. Engels, P. Richard, K. Schroeder, S. Blügel, Ph. Ebert, and K. Urban, Phys. Rev. B 58, 7799 (1998).
[3]
%Dietz, R. E.; Thomas, D. G.; Hopfield, J. J. Phys. Rev. Lett. 1962, 391–393.
[4]
%Thomas, D. G.; Hopfield, J. J.; Frosch, C. J. Phys. Rev. Lett. 1965, 15, 857–860.
[5]
%Jianjian Shi, Jiaheng Wang, Wei Yang, Zhejie Zhu, Yichu Wu, Materials Research. 2016; 19(2): 316-321.
[6]
%E. Schroten, A. Goossens, J. Schoonman, Journal of Applied Physics Vol. 83, 1660-1663 (1998).
[7]
%Ric P. Shimshock Editor, “Infrared Thin Films”, Deposition Sciences, Inc., Santa Rosa, CA, USA. Published 1992.
[8]
%M. Aki, Y. Ohno, H. Kohno and S. Takeda, Phil. Mag. A 59 (2000) 2694-2699.
[9]
%V. K. Gupta, C. C. Wamsley, M. W. Koch, and G. W. Wicks, J. Vac. Sci. and Technol. B 17, 1246 (1999).
[10]
%Yan Zhao and Donald G. Truhlar, THE JOURNAL OF CHEMICAL PHYSICS 128, 184109 (2008).
[11]
%J. Tao, J. P. Perdew, V. N. Staroverov, and G. E. Scuseria, Phys. Rev. Lett. 91, 146401 (2003).
[12]
%Y. Zhao and D. G. Truhlar, J. Chem. Phys. 125, 194101 (2006).
[13]
%M. Gruning, O. Gritsenko, and E. J. Baerends, J. Phys. Chem. A 108, 4459 (2004).
[14]
%H. Zenasni, H. Aourag, S. R. Broderick, and K. Rajan, Phys. Status Solidi B 247, No. 1, 115–121 (2010).
[15]
%J. Hafner et al, MRS BULLETIN • Vol. 31, (2006).
[16]
%Grimme, S. J. Comput. Chem., 25: 1463–1473 (2004).
[17]
%Jing-Jing Zheng, E. R. Margine, Phys. Rev. B 94, 064509 (2016).
[18]
%R. Khatri et al, AIP Conference Proceedings 1536, 419 (2013).
[19]
%M. Ameri, M. Fodil, Fatma Z. Aoumeur-Benkabou, Z. Mahdjoub, F. Boufadi, A. Bentouaf Materials Sciences and Applications, Vol. 3 No. 11, (2012).
[20]
%D. G. Green and G. F. Gribakin, Phys. Rev. A 95, 036701 (2017).
[21]
%X. Ma, M. Wang, Y. Zhu, Y. Liu, C. Yang, and D. Wang, Phys. Rev. A 94, 052709 (2016).
[22]
%K. Fujiwara, T, Hyodo, J. Phys. Soc. Jpn, 35 (1973) 1133.
[23]
%M. Saito, A. Oshiyama, S. Tanigawa, Private communication.
[24]
%W. Liu, S. Berko and A. P. Mills Jr., Positron annihilation, Matter. Sci. Forum, Szombachely, 743 (1992).
[25]
%R. R. Q. Freitas et al, J. Phys. Chem. C, 2015, 119 (41), pp 23599–23606.
[26]
%Scott Broderick, Graduate Theses and Dissertations, Iowa State University (2009).
Browse journals by subject